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MULTIWAY MONTE CARLO METHOD FOR LINEAR SYSTEMS∗

TAO WU† AND DAVID F. GLEICH†

Abstract. We study a novel variation on the Ulam–von Neumann Monte Carlo method for
solving a linear system. This is an old randomized procedure that results from using a random
walk to stochastically evaluate terms in the Neumann series. In order to apply this procedure, the
variance of the stochastic estimator needs to be bounded. The best known sufficient condition for
bounding the variance is that the infinity norm of the matrix in the Neumann series is smaller than
one, which greatly limits the usability of this method. We improve this condition by proposing a new
stochastic estimator based on a different type of random walk. Our multiway walk and estimator
is based on a time-inhomogeneous Markov process that iterates through a sequence of transition
matrices built from the original linear system. For our new method, we prove that a necessary and
sufficient condition for convergence is that the spectral radius of the elementwise absolute value of the
matrix underlying the Neumann series is smaller than one. This is a strictly weaker condition than
currently exists. In addition, our new method is often faster than the standard algorithm. Through
experiments, we demonstrate the potential for our method to reduce the time needed to solve linear
equations by incorporating it into an outer iterative method.
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1. Introduction. Monte Carlo algorithms for linear systems have a history go-
ing back to the dawn of computing, as described in Forsythe and Leibler (1950), and
use ideas from von Neumann and Ulam. They are usually explained in terms of the
following form of a linear system,

x = Hx + b.

This linear system formulation is an alternative to the canonical form Ax = b by
defining H = I −A. (We discuss ideas relating the two formulations in the context
of our experiments in section 5.4.) The essence of the idea is to use random walks
to construct a random variable X such the expected value E[X] = hTx for some
prescribed vector h. Then the computation simply involves generating random in-
stances of X and taking an average to stochastically estimate E[X]. A standard use
of the method would iterate through all choices h = ei for all n possible standard ba-
sis vectors to estimate each component of the solution. Alternatives include adjoint
methods that directly estimate the entire solution (Halton, 1994). We return to a
formal introduction to these ideas in section 2.

The class of Monte Carlo (MC) methods for linear systems is interesting because
there are many different trade-offs and features from classical iterative and Krylov
methods for solving linear systems. For instance, the methods parallelize exception-
ally well because they involve independent samples of a random variable. The com-
putational complexity or the convergence speed is not directly dependent on the size
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of the matrix and is determined by the variance of X instead. Thus, growing the size
of the problem does not necessarily increase the complexity of the method. Also MC
methods do not require access to all entries of the matrix H. Rather, they need to
simulate random walk steps, which usually only involves entries from a single row or
column of H. These scenarios are appealing for many recent complex and highly dis-
tributed computing environments such as cloud computing (Li and Mascagni, 2003)
and sensor networks (Slattery, Evans, and Wilson, 2015). Moreover, MC methods
have the ability to estimate only a single component or a linear combination of the
solution vector when it is unnecessary to compute or store the whole solution (Wang
et al., 2008).

One of the key theoretical weaknesses is that the applicability of these method is
often limited due to its slow convergence or even its failure to converge (Ji, Mascagni,
and Li, 2013). This has limited applicability of the method to scenarios where high
accuracy is not required, such as PageRank computations (Avrachenkov et al., 2007)
and graph partitioning (Srinivasan and Mascagni, 2002), or scenarios akin to pre-
conditioning (Halton, 1994; Evans et al., 2014; Slattery, 2013) where MC provides
an inner black box inside each iteration to accelerate the overall iterative procedure.
This is often advantageous because the MC part is highly parallel (LeBeau, 1999; Di-
etrich and Boyd, 1996), making it suitable for methods which need to scale to extreme
numbers of parallel processors.

1.1. Our contribution. In this paper we contribute new theory and methods
that improve the applicability of the MC method in terms of its convergence and
address a class of cases where it previously would not converge. First, note that
the central limit theorem underlying the relationship between the stochastic average
(1/N)(X1 +X2 + · · ·+XN ) and the expectation of E[X] (used in the analysis of MC
methods above), requires that Var[X] < ∞ for the stochastic average to converge.
Existing research (Dimov, Maire, and Sellier, 2015; Srinivasan, 2010; Wang et al.,
2008) assumes ‖H‖ < 1 (for the infinity norm ‖H‖ = maxi

∑
j |Hi,j |), which suffices

to show Var[X] < ∞. The norm bound on H, however, is a stronger condition
than ρ(H) < 1, which characterizes when the Neumann series underlying the method
converges. Although it is possible to have Var[X] < ∞ when ‖H‖ ≥ 1, there is no
easy way to check.

To tackle this problem, in section 3 we propose a new multiway random walk
that uses a time-inhomogeneous random walk built from the original linear system.
This is a generalization of the standard MC method and its associated random walk.
At each step of the random walk, the transition matrix is constructed in a way akin
to the Monte Carlo almost optimal framework (Dimov, Maire, and Sellier, 2015; Ji,
Mascagni, and Li, 2013). We prove an explicit form of the variance of this new type
of MC method in section 3.3, and derive results on the convergence of this method.
In section 4 we propose an efficient algorithm to construct the multiple transition ma-
trices, which we assemble into a transition hypermatrix, and prove that it minimizes
the upper bound of the norm of a matrix which directly determines the variance.

We further prove that, under this type of random walk, the new method al-
ways converges when ρ(H+) < 1, where H+ is the nonnegative matrix defined as
H+

ij = |Hij |. This is a strictly weaker condition than ‖H‖ < 1 and we can see that

moving from the condition ‖H‖ < 1 to ρ(H+) < 1 makes more problems solvable.
An illustration of this advance is shown in Figure 1. Second, our new method can
converge faster than the standard MC algorithm. We show that the standard algo-
rithm is a non-optimal special case in our multiway random walk settings, whereas
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Fig. 1. An illustration on the convergence regions for different methods: ρ(H) < 1 is the
requirement for the Neumann series underlying all MC methods to converge; ρ(H+) < 1 is the
requirement for our multiway walk-based method to converge; ‖H‖∞ is the sufficient condition for
the standard MC method to converge.

our multiway random walks choose the optimal transition hypermatrices, which tend
to minimize the variance.

In section 5, we conduct numerical experiments on both synthetic and real world
matrices. We demonstrate the effectiveness of our new method by comparing the vari-
ances computed according to our theorem and by comparing the stochastic errors from
the solvers as well. One downside to our approach is that is cannot be implemented
in a purely local fashion akin to the standard MC method as it requires global work
to build the multiway walk. Finally, we study an empirical performance model for a
specific linear system and a hybrid Richardson-based solver (akin to those from (Hal-
ton, 1994; Evans et al., 2014; Slattery, 2013)), which shows that—as expected—our
method can take advantage of more processors than traditional methods.

1.2. Notation. Throughout this paper, we use bold, uppercase letters such as
A to denote matrices, and bold, lowercase letters such as x to denote vectors. We use
letters with subscripts of indices to denote elements xi of a vector, and similarly Ai,j

to denote elements of a matrix. Random variables are uppercase, nonbold and may
also occur in sequences such as in X1, . . . , XN . The vector e is the vector of all ones
of appropriate size.

1.3. Related work. We briefly survey some of the recent work in the field
and note that our techniques may be combined with many of these ideas for further
improvements—although these are beyond the scope of our article. For instance,
similar MC techniques can also handle eigenvalue problems (Dimov et al., 2008). The
literature around MC for linear systems largely falls into three classes: direct methods,
hybrid methods, and applied studies including applications.

Direct methods study improving the techniques of the MC simulation and ran-
dom walks themselves. For instance Wasow (1952) constructs a slightly different
estimator from Forsythe and Leibler (1950), which has smaller variance under certain
conditions; Srinivasan and Aggarwal (2003) reformulates the MC method to evaluate
intricate iterative schemes related to general matrix splittings. For estimating the full
inverse, the results of Dimov, Dimov, and Gurov (1998) study the impact of column or
row specific formulations of each system. There are also other classes of approaches
that depart from the von Neumann–Ulam methods entirely, such as Sabelfeld and
Mozartova (2009), who proposed the sparsified randomization MC method that uses
samples of a random matrix estimator X where E[X ] = H in an iterative scheme
instead of the full matrix. These have different trade-offs.

Hybrid methods (Halton, 1994; Evans et al., 2014; Alexandrov et al., 2005) on
the other hand, use a direct MC method as a blackbox combined with more standard
iterative techniques that are amenable to stochastic variation in the iterates. The
sequential Monte Carlo (SMC) method (Halton, 1994) is one such method, which
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approximates the solution of r = Hr + b at each iteration, where r is the residual
after the previous approximate MC solves. Evans et al. (2014) and Slattery (2013)
introduced the Monte Carlo synthetic acceleration method, where one step of Richard-
son iteration is added to each iteration. This is a competitive method compared to
preconditioned conjugate gradients and GMRES on some systems.

Finally, there are also a variety of studies regarding other properties of the MC
method, for instance, parallel implementation (Dimov, Alexandrov, and Karaivanova,
2001; Slattery, 2013; Alexandrov et al., 2005), real world application (Wang et al.,
2008; Avrachenkov et al., 2007), convergence analysis (Ji, Mascagni, and Li, 2013;
Benzi et al., 2017), and spectral analysis (Slattery, Evans, and Wilson, 2015).

Note that, although there are some similarities and relationships with the study
of randomized methods, e.g., Drineas, Kannan, and Mahoney (2006a,b,c); Avron,
Maymounkov, and Toledo (2010); Halko, Martinsson, and Tropp (2011), the analysis
and types of techniques are rather different.

2. The standard Monte Carlo method. Consider the linear system of the
following form:

(1) x = Hx + b,

where H ∈ Rn×n and x,b ∈ Rn. Assuming the spectral radius ρ(H) < 1, then the
following Neumann series converges to the solution

x =

∞∑
`=0

H`b.

The MC method of estimating the solution vector is to simulate multiple Markov
chains where each chain is an unbiased estimator of the above Neumann series. This
can either be done with a forward technique to estimate any inner product with the
solution or an adjoint technique to estimate the entire solution.

2.1. Forward method. Consider the general goal of evaluating the functional
of the solution

(2) hTx or as we now will use 〈h,x〉 =

n∑
i=1

hixi.

We could then use this primitive to compute the solution by evaluating the functional
for each standard basis vector to get each single component of the solution. This is
the idea of the forward method.

To evaluate the functional, the MC method creates the following Markov random
walk X0, X1, . . . , and the associated walk related weight W . The state space of the
random walk are the indices of the linear system: S = {1, 2, . . . , n}. Both the initial
probability distribution of the walk and the transition probabilities have a large degree
of flexibility and hence are left underspecified. The method applies when the starting
probability distribution for the walk involves h as follows:

Pr(X0 = i) = pi such that hi 6= 0⇒ pi 6= 0

and the transition probabilities

Pr(X`+1 = j | X` = i) = Pi,j such that Hi,j 6= 0⇒ Pi,j 6= 0.

Let ν be a realization of the random walk:

k0 → k1 → k2 → · · · → k` → · · · .
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Let the walk related weight W and the random variable X be calculated as follows:

W`(ν) =
hk0Hk0,k1Hk1,k2 · · ·Hk`−1,k`

pk0Pk0,k1Pk1,k2 · · ·Pk`−1,k`

for ` = 0, 1, 2, . . . ,

X(ν) =

∞∑
`=0

W`bk`
.

Then it can be shown (for instance Dimov, Dimov, and Gurov (1998)) that E[X] =
〈h,x〉 and more specifically E[W`fk`

] = 〈h,H`f〉. Since the random variable is an
unbiased estimator of the solution, the MC method runs simulations of this random
walk and uses the empirical mean X̄ to approximate E[X].

If the desired output is the functional 〈h,x〉 itself, this method is a good idea.
However, as previously mentioned, in order to estimate the entire solution vector, the
method has to be applied multiple times to get a single entry of the solution each
time. This limitation can be better handled by the following adjoint method.

2.2. Adjoint method. Note that, in the forward method, the right-hand side
b only arises in the final path-dependent random variable X(ν). And so, we could
easily change b to estimate the solution of slightly different linear systems. However,
we would need to control the start of the walks to vary the vector h, which is what
we need to vary to get multiple components of the solution x. The idea with the
adjoint method is that we’d like to (and can!) invert the role of these two features.
We can create a method that starts depending on b and estimates solution entries
with path-dependent weights. To do so, consider the following linear system

y = HTy + d.

If x solves (1), then we have the following inner product equivalence:

〈x,d〉 = 〈(I −H)Ty,x〉 = 〈y, (I −H)x〉 =⇒ 〈x,d〉 = 〈y,b〉.

We can apply the technique from the forward method to compute the functional
〈y,b〉. Notice this requires that walks start depending on b. Then we can vary d
though e1, . . . , en depending on which state the random walk lands at each step. This
way, by a single random walk, each solution element x1, . . . , xn can be updated by
different random walk steps.

Putting the pieces together, now to estimate the whole original solution vector x
from the linear system (1), the adjoint method will construct the following Markov
chain with the initial probability

Pr(X0 = i) = pi such that bi 6= 0⇒ pi 6= 0

and the transition probability

Pr(X`+1 = j | X` = i) = Pi,j such that HT
i,j 6= 0⇒ Pi,j 6= 0.

And similarly, given a realization ν, we define the weight for each step as

W` =
hk0H

T
k0,k1

HT
k1,k2

· · ·HT
k`−1,k`

pk0Pk0,k1Pk1,k2 · · ·Pk`−1,k`

for ` = 0, 1, 2, . . . .
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Algorithm 1 Sequential Monte Carlo.

Require: matrix H, vector b, and initial point x0

Ensure: solution vector x∗ of x = Hx + b
1: xold = x0

while convergence requirement not met do
compute residual r = b + Hxold − xold

apply direct MC to approximate ∆x ' (I −H)−1r
update solution xnew = xold + ∆x
xold = xnew

end

As a result we can estimate the solution vector x for all components through the
expression

(3) xi = E

[ ∞∑
`=0

W`δk`,i

]
, where δi,j =

{
1 if i = j,

0 otherwise.

The above formula (3) shows a single chain can estimate every entry of the solution
vector x. To summarize, at each step the random walk will add a contribution to the
associated component i if it lands on state i.

In the following sections of this paper, we present our theoretical findings and
new techniques based on the forward method. Many of the conclusions hold also for
the adjoint method as the technique is fundamentally the same as described here.

2.3. A key and fundamental limitation. The overall algorithms for the MC
approach rely on the central limit theorem to estimate E[X] as the average of many
realizations of the random variable X. As discussed by Ji, Mascagni, and Li (2013)
and Wasow (1952), using MC simulation does not guarantee convergence because a
necessary and sufficient condition to estimate E[X] using the empirical mean value
of X is Var[X] < ∞. Empirical studies (Ji, Mascagni, and Li, 2013; Benzi et al.,
2017) show that it is common to have Var[X] = ∞ even when the Neumann series
converges (i.e., ρ(H) < 1). Additionally, the variance itself affects the convergence
speed of the MC simulation. So having a smaller variance is always an improvement
of the algorithm. It is easy to see that Var[X] depends on the transition matrix P
and the initial probability vector p; we will analyze the relations between variance
and transitions after we introduce our multiway random walk, as it generalizes the
standard procedure.

2.4. Sequential Monte Carlo. A downside of these direct methods is that the
convergence of directly applying the MC simulation is slow. The accuracy of each
estimate follows the conclusions from the central limit theorem, which yields that the
convergence rate of the direct method has a term of 1/

√
N , where N is the number

of simulations. This can require prohibitively large numbers of simulations, each of
which could be quite long, if we require high accuracy.

A more practical approach is to sequentially apply the standard MC scheme to
iteratively improve the accuracy of the solution in the fashion of iterative refinement.
This method is called sequential Monte Carlo (SMC) (Halton, 1994). Algorithm 1
shows the general procedure of such an approach.

As we note from the algorithm, each time the direct MC method is applied to the
linear system defined by the residual vector. For instance, if the relative error of the
residual can be decreased to 0.1 on average for each iteration, then it only requires
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around 8 iterations to reach an overall relative error at 10−8. The advantage of SMC
over the direct method is faster convergence in terms of total number of simulation
steps. The sequential method only seeks to approximate the solution at each iteration
so the total number of simulations required is much smaller. We will see this trade-off
in practice in the study in section 5.4.

3. Multiway Markov random walks. In this section we generalize the idea
of using a random walk for estimating the functional 〈h,x〉 to using a hypermatrix
of transitions to compute the estimate. Then we analyze the convergence of the
simulations based on the variance of the relevant random variable. We show that the
variance of this multiway random walk is a power series in a specific matrix, thus the
convergence of the MC simulation is determined by the spectral radius of this matrix.
Our notation for hypermatrices as in P are bold, underlined, uppercase letters. For

a mode-3 hypermatrix P , its elements are denoted by P
(`)
i,j .

3.1. Hypermatrix transitions. Instead of using a fixed transition matrix P as
in the classic MC method described in section 2, we extend this framework by allowing
the random walk to vary transition matrices along each step. To put a limit on the
number of different transition matrices, an m-way random walk is defined as walking
via m different transition matrices periodically in a round-robin way. Formally, we
define an m-way Markov random walk Zt on the state space, S = {1, 2, . . . , n}, where
the initial probability follows p, and the transition probability follows a hypermatrix
P with m slices:

(4)
Pr(Z0 = i) = pi,

Pr(Z`+1 = j | Z` = i) = P
(mod(`,m)+1)
i,j .

Here mod(`,m) denotes the remainder after dividing ` by m. For notation simplicity,

we are going to pretend that P has an unlimited number of slices by using: P
(`)
i,j

to denote P
(mod(`−1,m)+1)
i,j for ` = 1, 2, . . . . So under this notation, we have P (`) =

P (`+m) for ` = 1, 2, . . . , and also Pr(Z`+1 = j | Z` = i) = P `+1
i,j .

The above definition of multiway random walk is an instance of inhomogeneous
chains, which have been applied in various areas (Davis and Principe, 1993; Brémaud,
2013). However this idea has never been applied to the MC method on linear systems.
In this paper we show that under this new m-way random walk, several improvements
can be made into the standard algorithm. The reason we define the m-way random
walk in a round-robin manner is that we later find out the variance is directly related
to the matrix by grouping these m transition matrices together, and there exists an
efficient algorithm to construct these m transition matrices.

3.2. Estimating with multiway random walks. Our goal is to compute the
functional 〈h,x〉, where x is the solution of linear system x = Hx+b. Throughout the
paper we have the basic assumption ρ(H) < 1. We also exclude the corner cases where
h is a zero vector, or H has zero rows/columns, otherwise the zero rows/columns of
H can be easily removed by some basic linear algebra transformation.

If we construct the initial probability p and the transition hypermatrix P such
that

hi 6= 0⇒ pi 6= 0 and Hi,j 6= 0⇒ P
(`)
i,j 6= 0,

then for a random walk realization,

k0 → k1 → k2 → · · · → k` → · · · ,
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we can define the related weights W` and the variable Z in a similar way with section 2.
Formally,

(5)

W` =
hk0

Hk0,k1
Hk1,k2

· · ·Hk`−1,k`

pk0
P

(1)
k0,k1

P
(2)
k1,k2

· · ·P (`)
k`−1,k`

for ` = 0, 1, 2, . . . ,

Z =

∞∑
`=0

W`bk`
.

It is worth noting the above definition of multiway Markov random walk is a gener-
alization of the standard Markov chain, which is the special case with m = 1.

The following theorem shows that this random walk generalization has the same
expectation. Thus it also can be used to approximate the solution by MC simulation.

Theorem 1. For the linear system x = Hx + b with ρ(H) < 1, the random
variable Z defined from (5) has the expected value E[Z] = 〈h,x〉.

Proof. We first prove that E[W`bk`
] = 〈h,H`b〉 for all ` = 0, 1, 2, . . . . Then the

convergence of the Neumann series will give us E[Z] = 〈h,x〉.
We have E[W0bk0

] =
∑

pk0
6=0

hk0

pk0
bk0
pk0

=
∑

hk0
6=0 hk0

bk0
= 〈h,b〉. Similarly for

the case of ` ≥ 1,

E[W`bk`
] =

∑
k0

∑
k1

· · ·
∑
k`

hk0
Hk0,k1

Hk1,k2
· · ·Hk`−1,k`

pk0P
(1)
k0,k1

P
(2)
k1,k2

· · ·P (`)
k`−1,k`

bk`
pk0

P
(1)
k0,k1

P
(2)
k1,k2

· · ·P (`)
k`−1,k`

=
∑
k0

∑
k1

· · ·
∑
k`

hk0
Hk0,k1

Hk1,k2
· · ·Hk`−1,k`

bk`

= 〈h,H`b〉.

So E[Z] =
∑∞

`=0 E[W`bk`
] = 〈h,

∑∞
`=0 H

`b〉 = 〈h,x〉.

3.3. Convergence analysis. In order to statistically estimate E[Z], we need
to ensure Var[Z] < ∞. The following theorem reveals the explicit form of Var[Z]
determined by h,b,H and the m-way random walk transition probabilities (p,P ).

Theorem 2. For the linear system x = Hx + b with ρ(H) < 1, if H and b are
nonnegative, Z defined from (5) has variance

(6) Var[Z] =

〈
ĥ,

∞∑
i=0

H̃
i
GDiag(b)(2Hx + b)

〉
− 〈h,x〉2,

where Diag(b) is a diagonal matrix with diagonal entries equal to b, and ĥ, H̃,G are
defined as

ĥi =

{
h2i /pi if hi 6= 0,

0 if hi = 0,
Ĥ

(`)
i,j =

{
H2

i,j/P
(`)
i,j if Hi,j 6= 0,

0 if Hi,j = 0,

H̃ = Ĥ
(1)

Ĥ
(2)
· · · Ĥ

(m)
, G = I + Ĥ

(1)
+ Ĥ

(1)
Ĥ

(2)
+ · · ·+ Ĥ

(1)
Ĥ

(2)
· · · Ĥ

(m−1)
.
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Proof. Since Var[Z] = E[Z2] − (E[Z])2 = E[Z2] − 〈h,x〉2, we will focus on com-
puting E[Z2]:

E[Z2] = E

[ ∞∑
`=0

W 2
` b

2
k`

+ 2
∑
r>`

W`Wrbk`
bkr

]
.

Since all the intermediate terms are nonnegative, by Tonelli’s theorem we can analyze
the sum in pieces and the summation of the above terms are interchangeable.

For the first part of E[Z2], when ` = 0, we have E[W 2
0 b

2
k0

] =
∑

pk0
6=0

h2
k0

p2
k0

b2k0
pk0 =∑

ĥk0
6=0 ĥk0

b2k0
= 〈ĥ,Diag(b)b〉, and when ` ≥ 1,

E[W 2
` b

2
k`

] =
∑
k0

∑
k1

· · ·
∑
k`

hk0Hk0,k1Hk1,k2· · ·Hk`−1,k`

pk0
P

(1)
k0,k1

P
(2)
k1,k2
· · ·P (`)

k`−1,k`

2

b2k`
pk0P

(1)
k0,k1

P
(2)
k1,k2
· · ·P (`)

k`−1,k`

=
∑
k0

∑
k1

· · ·
∑
k`

ĥk0Ĥ
(1)
k0,k1

Ĥ
(2)
k1,k2

· · · Ĥ(`)
k`−1,k`

b2k`
(7)

= 〈ĥ, Ĥ
(1)

Ĥ
(2)
· · · Ĥ

(`)
Diag(b)b〉.

Applying the above result from (7), we have

E

[ ∞∑
`=0

W 2
` b

2
k`

]
=

〈
ĥ,

(
I +

∞∑
`=1

Ĥ
(1)

Ĥ
(2)
· · · Ĥ

(`)

)
Diag(b)b

〉
.

Denote F = I +
∑∞

`=1 Ĥ
(1)

Ĥ
(2)
· · · Ĥ

(`)
. Then we have

F = I + Ĥ
(1)

+ Ĥ
(1)

Ĥ
(2)

+ · · ·+ Ĥ
(1)

Ĥ
(2)
· · · Ĥ

(m−1)
+

∞∑
`=m

Ĥ
(1)

Ĥ
(2)
· · · Ĥ

(`)

= G +

∞∑
`=m

Ĥ
(1)

Ĥ
(2)
· · · Ĥ

(`)

= G + H̃

(
I +

∞∑
`=1

Ĥ
(1)

Ĥ
(2)
· · · Ĥ

(`)

)
(here we extract the shared term H̃ = Ĥ

(1)
Ĥ

(2)
· · · Ĥ

(m)
as Ĥ

(`)
is periodic)

= G + H̃F = G + H̃(G + H̃F )

=

∞∑
i=0

H̃
i
G.

Then after inserting the result of F , we have

(8) E

[ ∞∑
`=0

W 2
` b

2
k`

]
=
〈
ĥ,F Diag(b)b

〉
=

〈
ĥ,

∞∑
i=0

H̃
i
GDiag(b)b

〉
.
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Next we compute the second part of E[Z2]:

(9)

E

[∑
r>`

W`Wrbk`
bkr

]
= E

[ ∞∑
`=0

W`bk`

( ∞∑
r=`+1

Wrbkr

)]

=

∞∑
`=0

∑
k0

· · ·
∑
k`

hk0
Hk0,k1

Hk1,k2
· · ·Hk`−1,k`

pk0
P

(1)
k0,k1

P
(2)
k1,k2
· · ·P (`)

k`−1,k`

2

×

 ∞∑
r=`+1

∑
k`+1

· · ·
∑
kr

Hk`,k`+1
· · ·Hkr−1,kr

P
(`+1)
k`,k`+1

· · ·P (r)
kr−1,kr

× pk0
P

(1)
k0,k1

P
(2)
k1,k2

· · ·P (`)
k`−1,k`

P
(`+1)
k`,k`+1

· · ·P (r)
kr−1,kr

bk`
bkr


(here, we have extracted all the `+ 1 prefix terms in W` and Wr that are the same

because Wr covers W`)

=

∞∑
`=0

∑
k0

· · ·
∑
k`

(
ĥk0

Ĥ
(1)
k0,k1

Ĥ
(2)
k1,k2

···Ĥ(`)
k`−1,k`

)
bk`

 ∞∑
r=`+1

∑
k`+1

· · ·
∑
kr

Hk`,k`+1
···Hkr−1,kr

bkr

=

〈
ĥ,

∞∑
`=0

(Ĥ
(1)
· · · Ĥ

(`)
) Diag(b)

( ∞∑
r=`+1

Hr−`b

)〉

=

〈
ĥ,

∞∑
`=0

(Ĥ
(1)
· · · Ĥ

(`)
) Diag(b)Hx

〉

=

〈
ĥ,

∞∑
i=0

H̃
i
GDiag(b)Hx

〉
.

For these final steps, we used the Neumann series to move from the power series∑∞
r=`+1 H

r−`b to Hx and then used the periodicity again to rewrite the expressions
in terms of G. Now, combining the results from (8) and (9) we have the result.

For the general cases of H,b without the assumption of nonnegativity, if ρ(H̃) <
1, the above conclusion (i.e., (6)) still holds according to Fubini’s theorem. To see
that, when ρ(H̃) < 1, the variance in (6) is bounded, which is the value if H and
b are changed into a positive matrix or vector. Then the original summation is
interchangeable as the summation for the terms in absolute value is bounded.

Combining both of these results, the following corollary is straightforward from
the conclusion of Theorem 2.

Corollary 3. For the linear system x = Hx+b with ρ(H) < 1, if the spectral

radius ρ(H̃) < 1, then Var[Z] = 〈ĥ, (I − H̃)−1GDiag(b)(2Hx + b)〉 − 〈h,x〉2 <∞.

The above analysis of Var[Z] shows that with the condition ρ(H̃) < 1 and, by
the law of large numbers, we can estimate the value of 〈h,x〉 from the variable Z.
For the cases when ρ(H̃) ≥ 1, the following corollary shows that it is possible to have
Var[Z] =∞. The essence of the idea and proof is just that we can construct a vector
to touch the dominant eigenspace associated with eigenvalues ≥ 1.
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Corollary 4. Under the same assumptions as Theorem 2, if the spectral radius
ρ(H̃) ≥ 1, and if G is full rank, then there always exist some b,h ∈ Rn such that
Var[Z] =∞. (Note that for the standard MC method (i.e., m = 1), since G = I, the
method diverges for certain b,h.)

Proof. For simplicity, let us write Var[Z] = ĥ
T ∑∞

i=0 H̃
i
Gq − hTx, where the

vector q = Diag(b)(2Hx + b). Since our focus is to show that Var[Z] = ∞ we can
focus on the first term alone. Now, because ρ(H̃) ≥ 1, there must be a nontrivial
subspace associated with the eigenvalues with magnitude at least 1. This subspace
also must include a nonnegative vector because H̃ is nonnegative and the Perron–
Frobenius theory guarantees a nonnegative matrix has a nonnegative eigenvector with
the spectral radius (Horn and Johnson, 2012, Theorem 8.3.1). Consequently, we can

let h be any vector so that ĥ satisfies ‖ĥ
T
H̃‖ ≥ ‖ĥ‖, where it suffices to set ĥ to the

nonnegative dominant eigenvector in which case h and pi can be set to give this ĥ
under the conditions of Theorem 2. Now, note that Var[Z] will equal infinity unless Gq

will necessarily touch a subspace where powers decay (that is, if ‖H̃i
Gq‖ < ‖Gq‖).

Again, we know that there is some right eigenvector v of H̃ associated with the
eigenvalue with magnitude at least 1. Consequently, we need to ensure we can choose
b, which in turn determines q, such that vTGq 6= 0 to make sure that we can always
touch the growing subspace. For simplicity of notation, let y = GTv. We know that
y 6= 0 because G is full rank and v is an eigenvector.

Note the following, q can be analyzed as a function of either b or x because
(I − H)x = b is nonsingular (as in the original problem). As a function of x,
then q(x) = Diag((I − H)x)(I + H)x = Diag(x)x − Diag(Hx)Hx. (This fol-
lows by canceling the terms Diag(x)Hx−Diag(Hx)x, which are elementwise equal.)
Hence, we wish to establish that for a specific y, we can always choose x such that
yT [Diag(x)x−Diag(Hx)Hx] 6= 0.

Assume by way of contradiction that yTq(x) = 0 for all x. This implies

yTq(x) = eT Diag(y) Diag(x)x− eT Diag(y) Diag(Hx)x

= xT [Diag(y)−HT Diag(y)H]︸ ︷︷ ︸
=C

x = 0,

because diagonal matrices commute. Since we have xTCx = 0 for all x, then C = 0
will be zero. Thus, we have Diag(y) = HT Diag(y)H. Now, this equality yields the
bound ρ(Diag(y)) ≤ ρ(HT )ρ(Diag(y))ρ(H), and this is our contradiction because
we are given that ρ(H) < 1, which makes the previous expression read ρ(Diag(y)) <
ρ(Diag(y)), where y 6= 0.

Remark. Although Corollary 4 states that for the case of ρ(H̃) ≥ 1, there exists
some b,h ∈ Rn to make the variance infinite. It does not guarantee the variance is
bounded for other values of b and h. In fact, from the proof details we can see that as
long as there is a nonzero part projecting to the leading eigenvector with eigenvalue
≥ 1, then the variance goes to infinity. And this is likely to occur for some general
class of b and h.

4. Multiway Monte Carlo method. In this section we discuss two aspects
of practically applying the MC method based on the multiway Markov random walk
introduced in section 3. First, we detail the construction of the transition hypermatrix
P . Second, we give the error analysis regarding the truncation of the random walk,
as well as the probable error from the stochastic estimation.
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Algorithm 2 Compute transition hypermatrix.

Require: matrix H
Ensure: transition hypermatrix P

1: initialization ωi = 1 for i = 1, 2, . . . , n
for k = m to 1 do
ηi =

∑n
`=1 ω`|Hi,`| for i = 1, 2, . . . , n

P
(k)
i,j = ωj |Hi,j |/ηi
ωi = ηi for i = 1, 2, . . . , n

end

4.1. Transition hypermatrix. In section 3, Corollaries 3 and 4 indicate that
the spectral radius of matrix H̃ is crucial to the variance Var[Z]. The matrix H̃
is determined by the transition hypermatrix P . Since it is usually computationally
inefficient to directly compute the spectral radius of a matrix, the common practice is
to find an upper bound of ρ(H̃). The spectral radius of a matrix is bounded by any
submultiplicative matrix norm. As is standard in the literature, we use the infinity

norm ‖ · ‖ def
= ‖ · ‖∞ for this section.

We first consider the case for the standard Markov random walk (i.e., m = 1),

where H̃i,j = Ĥ
(1)
i,j = H2

i,j/P
(1)
i,j . The following lemma (Ji, Mascagni, and Li, 2013)

provides insight on how to assign the values of the transition matrix P (1) in order to
minimize the norm.

Lemma 5 (Ji, Mascagni, and Li (2013)). Let h = (h1, h2, . . . , hn)T be a vector,
where at least one of its elements is nonzero: hk 6= 0 for some k ∈ {1, 2, . . . , n}.
Let p = (p1, p2, . . . , pn)T be a probability distribution vector. Then

∑n
i=1 h

2
i /pi ≥

(
∑n

i=1 |hi|)2, and the lower bound is attained when pi = |hi|/
∑n

r=1 |hr|.
According to Lemma 5, the infinity norm

‖H̃‖ = max
1≤i≤n

n∑
j=1

|H̃i,j | = max
1≤i≤n

n∑
j=1

H2
i,j

P
(1)
i,j

≥ max
1≤i≤n

 n∑
j=1

|Hi,j |

2

= (‖H‖)2.

And when P (1) is defined as

P
(1)
i,j =

|Hi,j |∑n
k=1 |Hi,k|

for all i, j = 1, 2, . . . , n,

the above lower bound (‖H‖)2 is reached, making this choice in some sense optimal.
However, for a variety of problems, this choice is unlikely to result in a method

that will have ρ(H̃) < 1. For a linear system Ax = b, we can rewrite it into
x = Hx+ b as H = I −A. It is common to have ρ(H) be very close to 1 even with
the help of preconditioners (Benzi et al., 2017). Since the infinity norm is generally
a loose upper bound for the spectral radius, ‖H‖ > 1 is likely (Benzi et al., 2017) to
be true. We will show we can tighten these results with our multiway walks.

We describe the method for computing P for an m-way Markov random walk in
Algorithm 2, then we prove in Theorem 6 that it minimizes ‖H̃‖.

It is worth noting that Algorithm 2 only takes linear time in the number of
nonzeros of the matrix H at each iteration. Also the output result of the transition
hypermatrix is compatible with different values of m, which means that m does not
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need to be predefined to run the algorithm. In other words, we can stop the iteration
anytime we want and still get the output hypermatrix for some smaller m. This is
useful when we later discuss how to choose the value of m, as it turns out that we can
set a criterion to stop the iteration. Last we see that the output transition hypermatrix
P is only determined by H. So the procedure of computing P is similar to loading
the matrix into the memory as they both only need to be done once for different
problems (i.e., different h and b). On the other hand, the operations in Algorithm 2
work akin to matrix-vector products. This means that we need global computation
to compute this sequence and this choice prohibits a purely local algorithm.

Another property to note is that the multiway procedure walk created by Algo-
rithm 2 will have no multiway effects when all the row sums of H+ are the same. When
H+ has the same row sums, then the output transition matrices P (1),P (2), . . . ,P (m)

will be the same, where P (i) for i = 1, 2, . . . ,m denotes the matrix slice from the
hypermatrix P .

The following theorem proves that the output from Algorithm 2 reaches optimal-
ity.

Theorem 6. Let P be the output of Algorithm 2, then H̃ defined in Theorem 2
has reached its minimal infinity norm.

Proof. Denote η
(k)
i as the value of ηi at the kth iteration.

We first prove that the value of ‖H̃‖ cannot be further decreased by changing

P (m). Since H̃ is a nonnegative matrix, ‖H̃‖ = ‖H̃e‖ holds. The kth element of

Ĥ
(m)

e is
∑n

j=1H
2
k,j/P

(m)
k,j and, according to Lemma 5, this value is minimized when

P
(m)
k,i = |Hk,i|/

∑n
j=1 |Hk,j |, which is exactly the kth row of P (m) from the algorithm.

Thus by changing P (m), we cannot decrease any elements of vector Ĥ
(m)

e, and thus

‖H̃‖ = ‖H̃e‖ = ‖(Ĥ
(1)
· · · Ĥ

(m−1)
)Ĥ

(m)
e‖

will not decrease because all the matrices involved are nonnegative and Ax ≤ Ay
(elementwise) for a nonnegative matrix when x ≤ y (elementwise).

Second we note that(
(η

(m)
1 )2, (η

(m)
2 )2, . . . , (η(m)

n )2
)T

= Ĥ
(m)

e.

This follows directly from the algorithm because P (m) is constructed as P
(m)
k,i =

|Hk,i|/
∑n

j=1 |Hk,j |, which means the kth element of Ĥ
(m)

e is (
∑n

j=1 |Hk,j |)2 =

(η
(m)
k )2.

Last we use mathematical induction by assuming that
• we cannot decrease ‖H̃‖ by changing P (`) for r + 1 ≤ ` ≤ m;

•
(
(η

(`)
1 )2, (η

(`)
2 )2, . . . , (η

(`)
n )2

)T
= Ĥ

(`)
· · · Ĥ

(m)
e for r + 1 ≤ ` ≤ m.

Since we already proved the statement holds for the case of ` = m, then similarly we
prove that the statement holds for P (r). We notice that

the kth element of Ĥ
(r)

Ĥ
(r+1)

· · · Ĥ
(m)

e is

n∑
j=1

(Hk,jη
(r+1)
j )2/P r

k,j

and this value is minimized because P (r) is constructed as

(10) P
(r)
i,j = η

(r+1)
j |Hi,j |/

n∑
k=1

η
(r+1)
k |Hi,k|.
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So no elements of the vector Ĥ
(r)

Ĥ
(r+1)

· · · Ĥ
(m)

e will decrease in value and neither
will norm ‖H̃‖ if we change P (r). From formula (10) we can compute the kth element

of Ĥ
(r)

Ĥ
(r+1)

· · · Ĥ
(m)

e as (
∑n

j=1 η
(r+1)
j |Hk,j |)2 = (η

(r)
k )2. So we have proved that

this induction statement also holds for ` = r and we are done.

Remark. The standard 1-way method can also be viewed as a special case of the
m-way random walk setting, with the m transition matrices being the same. However
the 1-way method generally does not minimize ‖H̃‖ in the m-way setting according
to Algorithm 2. Formula (6) from Theorem 2 indicates the connection between the
variance and the power series of H̃. Since ‖H̃‖ is an upper bound of ρ(H̃) and ρ(H̃)
affects how big this power series will grow, we can see that the m-way random walk
with transition hypermatrix defined from Algorithm 2 has the tendency to decrease
the variance compared to the standard 1-way method. Although the above analysis
does not ensure a smaller variance for the m-way method, numerical experiments in
both synthetic matrices and matrices in real applications support this conjecture (see
section 5).

Example. We now illustrate a simple, concrete, example of how the multiway
walks improve the simulation procedure. Consider a problem where

H =

[
0.85 0.4
0.2 0

]
.

The transition matrix generated by the standard method is

P =

[
0.68 0.32

1 0

]
.

The two transition matrices generated by the 2-way method are

P (1) =

[
0.93 0.07

1 0

]
, P (2) =

[
0.68 0.32

1 0

]
.

The resulting H̃ are

the standard method

[
1.04 0.50
0.04 0

]
with spectral radius 1.060;

the 2-way method

[
0.88 0.38
0.04 0.02

]
with spectral radius 0.899.

Since the probability values appear as divisors when computing H̃, without being
able to assign a high enough value to the first entry in the transition matrix makes
the entry in H̃ grow to 1.04, which causes the spectral radius to be bigger than one.
In other words, this effect accumulates and amplifies over steps causing the variance
of the weights goes to infinity.

The transition matrices from the standard MC are row independent (they don’t
utilize the information among rows), but transition matrices in multiway MC are row
dependent (the values in one row can affect the transitions in another row). In this
way the multiway MC provides a more global view on how to assign the probabilities of
the transition matrices. In this example, the standard method assigns the probability
values of each entry purely based on the corresponding row of H (i.e., proportional),
while the multiway method also considers the information from other rows. For
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example, both rows have the highest value in index 1, so it means that we should
assign high probabilities to index 1 for both rows. However the second row indicates
that the probability for index 1 should be much higher than index 2. Since the
standard method cannot utilize such a hint, it only assigns 0.68 to the corresponding
entry. The 2-way method adjusts it to 0.93 once that information appears.

4.2. Guaranteeing convergence. Recall that in order to have ρ(H̃) < 1, a
sufficient condition for the standard 1-way method is to have ‖H‖ < 1. As we
previously mentioned, others have found this is not always easy to accomplish.

For a multiway random walk, to bound the spectral radius, a sufficient condition
is to have ‖H̃‖ < 1. We now show that this can be guaranteed in a more general
setting than for the standard 1-way method.

Theorem 7. Let H+ denote the nonnegative matrix, where H+
i,j = |Hi,j |. There

exists an m-way Markov random walk transition hypermatrix P such that ‖H̃‖ < 1
if and only if ρ(H) ≤ ρ(H+) < 1.

Proof. First, note that ρ(H) ≤ ρ(H+). (We were unable to rapidly find a refer-
ence for this fact, but the proof follows quickly when v is the eigenvector correspond-
ing to the spectral radius of H, so ρ(H) ≤ mini with vi 6=0

∑
j |Hij ||vj |/|vi| from simple

absolute value properties. Then |v| is a feasible vector for the Collatz–Wielandt vari-
ational characterization of the spectral radius ρ(H+) from Horn and Johnson (2012,
Corollary 8.3.3).) If there exists an m-way Markov random walk transition hyperma-
trix P such that ‖H̃‖ < 1, without a loss of generality we assume P is the output

from Algorithm 2 since Theorem 6 states that it minimizes ‖H̃‖. From the proof of
Theorem 6 we have

(11) ‖H̃‖ = ‖H̃e‖ = ‖Ĥ
(1)

Ĥ
(2)
· · · Ĥ

(m)
e‖ = ‖

(
(η

(1)
1 )2, (η

(1)
2 )2, . . . , (η(1)n )2

)T ‖.
According to the constructing procedure of Algorithm 2 we have

(η
(`)
1 , η

(`)
2 , . . . , η(`)n )T = (H+)me,

so that

‖H̃‖ < 1 =⇒ ‖(H+)me‖ < 1 =⇒ ‖(H+)m‖ < 1 =⇒ ρ(H+) < 1.

If we have ρ(H+) < 1, from Gelfand’s formula, we have

ρ(H+) = lim
k→∞

‖(H+)k‖1/k.

Then we can find a sufficiently large number m such that for any k ≥ m the inequality

‖(H+)k‖1/k < 1 holds. Let H̃ be the matrix based on the transition hypermatrix
output from Algorithm 2. Based on the observation of (11), we have

ρ(H+) < 1 =⇒ ‖(H+)m‖ < 1 =⇒ η
(1)
i < 1, i = 1, 2, . . . , n =⇒ ‖H̃‖ < 1.

Theorem 7 creates an equivalent link between ρ(H+) < 1 and the existence of an
m-way Markov random walk such that ‖H̃‖ < 1. We note that ρ(H+) < 1 is a strictly
weaker condition than ‖H‖ < 1, which means it is one step closer to the condition
ρ(H) < 1 that Neumann series converges to given the conclusion of ρ(H) ≤ ρ(H+).
Also it is worth noting Theorem 7 does not guarantee the size of m. In other words,
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one can always cook up some example matrix H with ρ(H+) < 1 but that will require
m to be arbitrarily large. Although these extreme cases are not our primary focus
in this paper, we point it out for the discussion of the practical implementation of
Algorithm 2. In order to find the transition hypermatrix P with ‖H̃‖ < 1, we can set
a threshold number φmax, and let m grow until we have ηi < 1 for all i = 1, 2, . . . , n or
m = φmax. Note that the condition of ηi < 1 for all i = 1, 2, . . . , n directly reveals that
‖H̃‖ < 1. If this condition has not been satisfied when m = φmax, then this problem
cannot have an m-way random walk with m up to φmax to ensure the convergence of
the MC simulation. The value of φmax is a trade-off between how much computational
effort to spend before and during the random walk simulation. As stated before, we do
not need to rerun the algorithm for different values of m, because the way Algorithm
2 computes the transition hypermatrix is compatible with different values of m.

4.3. Random walk error analysis. To practically estimate the value 〈h,x〉
from simulating the random variable Z, we need to truncate the multiway Markov
random walk in order for it to end after some large number of steps N . To do this, we
wish to show that the estimator weight WN will go to zero as the walk continues, in
which case, a practical truncation procedure (Dimov, Dimov, and Gurov, 1998; Benzi
et al., 2017) to determine N is through the criterion: |WN | ≤ ε|W0|, where ε > 0
denotes some small number. An alternative for solving a linear system is to fix N
upfront and use an SMC procedure, as we do in the next section.

The value |WN | is a random variable and, through a similar analysis in Theorem 1,
we have the following result regarding its expectation and variance.

Corollary 8. Let W` denote the weight of the m-way random walk after ` steps.

Then E[|W`|] = 〈h+, (H+)`e〉 and Var[|W`|] = 〈ĥ, H̃`/m
Ĥ

(1)
Ĥ

(2)
· · · Ĥ

(`%m)
e〉 −

(〈h+, (H+)`e〉)2, where we use `/m and `%m to denote the quotient and the remain-
der.

Proof. First it is easy to see the expectation E[|W`|] = 〈h+, (H+)`e〉 with a simi-
lar analysis from the proof of Theorem 1. We then compute the variance: Var[|W`|] =
E[W 2

` ]− (E[|W`|])2.
For the first part of the variance,

E[W 2
` ] =

∑
k0

∑
k1

· · ·
∑
k`

hk0
Hk0,k1

Hk1,k2
· · ·Hk`−1,k`

pk0P
(1)
k0,k1

P
(2)
k1,k2

· · ·P (`)
k`−1,k`

2

pk0
P

(1)
k0,k1

P
(2)
k1,k2

· · ·P (`)
k`−1,k`

=
∑
k0

∑
k1

· · ·
∑
k`

ĥk0
Ĥ

(1)
k0,k1

Ĥ
(2)
k1,k2

· · · Ĥ(`)
k`−1,k`

= 〈ĥ, Ĥ
(1)

Ĥ
(2)
· · · Ĥ

(`)
e〉

= 〈ĥ, H̃`/m
Ĥ

(1)
Ĥ

(2)
· · · Ĥ

(`%m)
e〉.

The last step of the derivation uses the periodicity of the transition matrices. So the

variance Var[|W`|] = 〈ĥ, H̃`/m
Ĥ

(1)
Ĥ

(2)
· · · Ĥ

(`%m)
e〉 − (〈h+, (H+)`e〉)2.

This result shows that the expectation of |W`| grows with the matrix H+, whereas
the variance grows with the matrix H̃. And they can both either shrink to zero or
expand to infinity. Here, we find that ρ(H+) < 1 is a necessary condition to have a
finite truncation number N , in which case the weight goes to zero in expectation. In
fact, this is a necessary requirement for any MC procedure (even m = 1) to be able
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to truncate the walk with a finite N . This setting nicely matches our m-way walk as
ρ(H+) < 1 was a sufficient condition for that procedure to have a finite variance (see
Theorem 7).

5. Numerical experiments. In this section, we conduct several experiments
to study the behaviors of the MC methods on linear systems. Codes to reproduce
these experiments are available at https://github.com/wutao27/multi-way-MC.

• In section 5.1, we compute the variance of the MC methods derived from
Theorem 2, to see how our multiway methods would speed up computation.

• In section 5.2, we run the actual MC simulations and show that the variance
obtained behaves as Theorem 2 indicates.

• In section 5.3, we apply both the forward method and the adjoint method to
solve linear systems. And we compare the error versus number of simulations
for the standard method and our multiway methods.

• In section 5.4, we conduct a case study on one problem to demonstrate that a
multiway MC method and SMC can, in principle, out-perform existing solvers
in parallel environments.

Throughout the experiment section, we use n to denote the size of the solution
vector, m to denote the number of ways in the multiway setting, and N to denote the
total number of simulations.

5.1. Analysis of variance based on theory. In this section we analyze the
methods in terms of their variances computed from Theorem 2. We look into the two
aspects of the variance:

• The MC simulation will only work when the variance is bounded. We check
whether the sufficient condition ‖H̃‖ < 1 holds for specific values of m in
a large number of synthetic problems to determine the fraction of solvable
problems at a specific m.

• Smaller variance should indicate faster convergence for the MC simulation.
We compare the speed improvement from the standard 1-way method to our
multiway methods based on the theoretical variances.

Solvable problems. A problem is solvable when the condition ‖H̃‖ < 1 is satisfied
in light of the value of m, which is a sufficient condition that guarantees the conver-
gence of the MC simulations. We use synthetic data where each H is generated as a
1000 by 1000 sparse random matrix with 20% of its entries being nonzeros, and each
nonzero is a random number following uniform distribution between (0, 1). These
synthetic matrices are rescaled so that the spectral radius ρ(H+) is as prescribed
during the experiments. Formally to get a spectral radius 0 < r < 1 of ρ(H+), we
scale H ← rH/ρ(H+). Given our theory, there exists a value of m such that all
the problems we study are solvable. Figure 2 shows the ratio of solvable problems,
which is defined as the percentage of synthetic random problems that are solvable at
a particular value of m. Each result is the average over 100 trials.

As we can see in Figure 2 when ρ(H+) increases, the problems become harder to
solve and the solvable ratio drops for each method. However our multiway methods
are much more robust and can handle the cases of large ρ(H+). To see that, the
standard method can hardly guarantee any solution convergence when ρ(H+) ≥ 0.85.
As m increases, our method can guarantee to solve more problems, and there is a big
improvement even when switching from the standard method to the 2-way method.

Speedup times. Here we consider the same type of synthetic problems as well as
real world matrices. For real world matrices, we focus on the Harwell-Boeing (HB)
sparse matrix collection (Duff, Grimes, and Lewis, 1992; Davis and Hu, 2011). The

https://github.com/wutao27/multi-way-MC


A3466 TAO WU AND DAVID F. GLEICH

0.75 0.8 0.85 0.9 0.95

ra
tio

0

0.2

0.4

0.6

0.8

1

standard 1-way

2-way

3-way 4-way
5-way

Fig. 2. The results of the standard 1-way method and our multiway methods with m = 2, 3, 4, 5
for the ratio of solvable synthetic problems versus the spectral radius ρ(H+).

matrix H is constructed by a simple left diagonal precondition operation on the
original matrix A from the collection: H = I − Diag(A)−1A. And for the test
problems we only consider the matrices that have ρ(H+) < 1. In the interest of
simplicity, we only use problems with fewer than 5000 dimensions. We exclude the
problems where MATLAB gives a warning about the matrix being nearly singular,
as therefore it cannot accurately calculate the variance. Also we do not consider
problems with equal row sums in H since the multiway method would be the same
as the standard method. There are 20 matrices from the Harwell-Boeing collection
in this experiment that meet this criteria. There are 6 problems where the sufficient
condition for the standard method is violated but the condition for our multiway
methods is satisfied, and 3 of them can be confirmed to converge with m ≤ 5. They
are matrices fs 760 1, jpwh 991, and nos7.

In Table 1, we study theoretical speedup times based on variance. In this case,
speedup is defined as Var[X]/Var[Z], where X and Z denote the random variables
from the standard 1-way method and our method, respectively. It is an indicator
of how many times faster our multiway methods could be compared to the standard
1-way method. We apply the conclusion in Theorem 2 to compute Var[X] and Var[Z]
for all the testing methods. We can see that the speedup times increase as m increases;
therefore, allowing the random walk to transition among multiple matrices helps with
the performance. We also notice that as the problem becomes harder (i.e., ρ(H+)
gets closer to 1), the improvements become more significant.

Among our testing problems, there is only one outlier (http://www.cise.ufl.edu/
research/sparse/matrices/HB/fs 760 1.html) where our multiway methods have a
larger variance than that from the standard method. For this problem, the matrix H
is almost outside our assumptions in this paper. We assume that H does not have
zero rows in order to assign transition probabilities for each state. For this testing
problem H, the row sums of H+ distribute in a drastic way. Over half of the rows
have sum values between 10−17 to 10−6, and quite a few “big” rows have sums larger

http://www.cise.ufl.edu/research/sparse/matrices/HB/fs_760_1.html
http://www.cise.ufl.edu/research/sparse/matrices/HB/fs_760_1.html
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Table 1
The speedup times by our multiway methods with m = 2, 3, 4, 5 compared to the standard 1-way

method on synthetic problems and the Harwell-Boeing collection. r denotes ρ(H+).

2-way 3-way 4-way 5-way

ρ(H+) Synthetic matrices

0.8 1.09 1.13 1.14 1.15
0.9 1.38 1.58 1.69 1.77
0.95 1.75 2.30 2.73 3.06
0.99 2.40 3.77 5.10 6.39

Harwell-Boeing collection

1.20 1.44 1.59 1.74

Table 2
The variances computed from Theorem 2 for problems H1 and H2.

1-way 2-way 3-way 4-way 5-way

H1 1.645 0.6526 0.4654 0.3960 0.3599
H2 ∞ 3.771 1.446 0.9764 0.7768

than 103. So this matrix has many rows that are nearly zero. We did not spend time
trying to customize our methods to handle this particular case. Note also, that this
case fails the sufficient condition for the standard method to converge as discussed
above, but when we compute the variance explicitly, we find it is finite. For all the
other testing problems, our multiway methods can achieve smaller variances than the
standard method, and the speedup times are shown in Table 1.

5.2. Analysis of variance based on simulations. In this section we imple-
ment the actual MC simulations based on the standard and the multiway random walk
procedures. Since the theoretical conclusion regarding the variance (i.e., Theorem 2)
gives a computable expression, we want to validate it by comparing the variances
obtained from theory and simulations.

Consider the following two problems with matrix H defined as

H1 =

[
0.75 0.4
0.2 0

]
, H2 =

[
0.85 0.4
0.2 0

]
.

The problem H2 was also studied in section 4.1.
These two problems look very similar; however, according to Theorem 2 the

standard method only manages to solve the problem with H1, and the variance for
the problem H2 is infinity (see Table 2). Note that, for simplicity, we use the all ones
vector e for the value of b and h. And we scale h to make E[Z] = 1, which helps
provide a unified scaling in terms of variances.

Then we run the MC simulations and calculate the empirical variances. The simu-
lation does 108 random walks with the truncation value set toN = 100 for problem H1

and N = 200 for problem H2. Figure 3 shows the variance results for problems H1

and H2. As we can see, the variances increase then converge to the same value as the-
oretically computed. For H2, we plot the empirical variance of the 1-way walk in Fig-
ure 4. The variance for the standard method surges up to 1600, which is far larger than
the variances (bounded by 5) from the multiway methods. We can conclude that the
variance for the standard method diverges, even though the variance looks like it con-
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Fig. 3. The empirical variances obtained from the MC simulations for different methods on
problems H1 (left) and H2 (right).
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Fig. 4. The empirical variance obtained from the MC simulations for the standard 1-way
method on problem H2.

verges to some value around 1700. The reason is that we cannot accurately estimate
an infinite value by simulations. In fact when we run multiple trials, we get different
variances (from several hundred to several thousand) for this case. On the other hand,
the multiway methods shown in Figure 3, converge nicely and reliably as the number
of steps grows. These experiments support and illustrate our theoretical findings.

5.3. Analysis of solvers based on simulations. In this section, we run the
MC simulations on solving the linear system with both the forward method and the
adjoint method. We compare the performances of the standard 1-way method and
the multiway (i.e., m = 5) method by evaluating the relative errors. Then we also
calculate the speedup times from the simulations to check if they are consistent with
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Fig. 5. The relative error (average over 100 trials) obtained from the MC simulations for the
standard 1-way method and the multiway method with m = 5 on problem H1. The result for the
forward method is on the left, and the result for the adjoint method is on the right.

the ones we compute from variances. For the forward method, the target problem is
〈h,x〉 such that x = Hx + b, where both h and b are the vector of all ones. For the
adjoint method, the target problem is to solve x from x = HTx+b. Note that we use
HT instead of H to make the adjoint method consistent with the forward method in
terms of the transition matrix.

In order to show that our multiway methods can speed up the convergences the
same way as theoretically predicted, we first consider the problem H1 from section 5.2.
The speedup times are calculated as

Var[X]

Var[Z]
=

1.645

0.3599
= 4.57

when we compare the multiway (m = 5) method against the standard one. For
the experiment setting, we apply a truncation value of N = 100 for the length of
each random walk. We study the convergence of the relative error up to 2 million
simulations. Since the MC simulations can produce stochastic volatility, in order to
make the results more robust and smooth, we report the average results over 100 trials.

Figure 5 shows both the relative errors drop when the number of simulations in-
creases. However the convergence from the multiway method is much faster, and this
observation holds for both the forward method and the adjoint method with similar
scale. For instance, when we fix the relative error as 10−3, at the forward method set-
ting, it takes around 240,000 simulations for the multiway method and 1,140,000 sim-
ulations for the standard method. Therefore the speedup times are around 4.75 which
matches our expectation. A similar analysis holds for the adjoint method as well.

Next we choose a matrix (jpwh 991) from the Harwell-Boeing collection to con-
duct the same error analysis. It is a 991 by 991 matrix with 6027 nonzeros. Note
that we do not choose the matrix with the best speedup performance. We choose
this matrix as it represents the average speedup performance of the Harwell-Boeing
collection. The theoretical speedup times calculated from the variances is 1.88 for the
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Fig. 6. The relative error (average over 100 trials) obtained from the MC simulations for the
standard 1-way method and the multiway method with m = 5 on the problem from the Harwell-
Boeing collection. The result for the forward method is on the left, and the result for the adjoint
method is on the right.

multiway (m = 5) method. In this experiment, the truncation value is N = 1000, and
all the other settings remain the same. The results are shown in Figure 6. As we can
see from the figures, it takes approximately 2 times the number of simulations for the
standard method in order to reach the same relative error with the multiway method.

5.4. Solving to high accuracy, a case study on parallelism in jpwh 991.
We now wish to understand how our results might be applied to solving a linear
system to a higher accuracy. This involves choosing a forward or adjoint solution
method as a low-accuracy solver and then using the SMC framework to iteratively
achieve high accuracy. Our particular goal here is to understand if our solver could,
in principle, be parallelized such that it is faster than a Richardson or GMRES solver
on the same system. Thus, we use the early synthetic results as data for a parallel
performance model that shows we should be able to outperform a parallel GMRES
and Richardson implementation with enough processors.

We use the same real world matrix from section 5.3, jpwh 991 from Harwell-
Boeing. The test problem is Ax = b, where we set b = e as the vector of all ones.
The problems studied in these experiments are as follows:

left diagonal preconditioner: H = I −D−1A,

right diagonal preconditioner: H = I −AD−1.

The matrix is 846 by 846 with 4716 nonzeros after preprocessing of deleting empty
rows and columns induced by the transformation (there are some rows with only
diagonal entries).

Forward versus adjoint solvers. From the introduction in section 2, we know that
the forward method can also be applied to get the entire solution vector x from the
linear system x = Hx+b if we run the simulation independently for each individual
basis vector ei. Alternatively we can apply the adjoint method, where each random
walk simulation will be able to update every element of the solution vector. We
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Table 3
The number of simulations needed to reach a relative error of around 0.05. Each experiment is

repeated 100 times, and the average relative error is reported. The matrix is 846 by 846 with 4716
nonzeros after preprocessing of deleting empty rows and columns induced by the transformation
(there are some rows with only diagonal entries).

Method # simulations Relative error

Forward and left precondition 126,900 = 150× 846 0.0493
Adjoint and left precondition 465,000 0.0515
Forward and right precondition 16,074,000 = 19,000× 846 0.0511
Adjoint and right precondition 7000 0.0500

first conduct an experiment to compare these two different approaches to understand
which one to study further on this problem.

We notice that there are mainly two differences between these two approaches:
• The weight W for each random walk is defined based on H for the forward

method and HT for the adjoint method. Thus they can have different vari-
ances.

• Each random walk simulation for the forward method only updates one ele-
ment from the solution vector x, while the adjoint method allows each random
walk to update all elements of the vector. So intuitively the adjoint approach
is a more efficient approach. However we cannot simply conclude that the
adjoint method should be n times more efficient than the forward method,
because allowing each random walk updating multiple elements introduces
covariance into the solution.

We compare the total number of simulations required in order to reach a relative
error of 0.05 on average for the forward method with a left diagonal preconditioner, the
forward method with a right diagonal preconditioner, the adjoint method with a left
diagonal preconditioner, and the adjoint method with a right diagonal preconditioner.
We conduct experiments for all the above methods with the standard 1-way setting.
The truncation size is set at N = 200.

Table 3 shows the experimental results. We find that when applying the left
preconditioner, the adjoint method is actually more expensive. We believe the reason
is that left diagonal preconditioning has the effect of normalizing rows of H, which
works well when the forward method constructs the transition matrix based on the
rows of H. The adjoint method constructs the transition probabilities based on the
row of HT (i.e., columns of H), therefore, it does not work very well given the
left diagonal preconditioner. When applying the right diagonal preconditioner, we
find the adjoint method is much more efficient, while the forward method becomes
quite expensive. To summarize, by comparing the adjoint method (with the right
precondition) to the forward method (with the left precondition), we find the adjoint
method is around 18 times faster, which is not as trivial as n = 846 times faster.

SMC analysis. Next, we study how the SMC method works in practice compared
to the Richardson iteration and GMRES. We apply the 5-way MC simulation for each
inner iteration. Table 4 shows the results as we vary the random walk length and the
number of simulations.

First we notice that for the SMC method, when the number of simulations per
iteration increases, the total number of iterations decreases as a result of more accurate
approximation of the direct MC within the iteration. And it becomes much more
expensive to further decrease the number of iterations. Another interesting result
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Table 4
Results of the three methods: Richardson iteration, GMRES, and SMC on the linear system

with a target relative residual of 10−8. We use the 5-way MC simulation for each inner iteration. We
run multiple versions of SMC varying the total number of iterations and the number of simulations
per iteration. The random walk length is chosen as the best length given the number of simulations
per iteration. We note that when the number of simulations is small, the random walk length also
tends to be small as it cannot accurately handle the larger length.

Methods Random walk
length

# simulations
per iteration

# iterations Relative
residual

Richardson - - 891 9.92× 10−9

GMRES - - 55 6.41× 10−9

SMC 2 800 462 9.53× 10−9

SMC 6 2500 159 9.83× 10−9

SMC 10 5000 95 9.83× 10−9

SMC 30 25,000 33 5.54× 10−9

SMC 50 50,000 23 9.51× 10−9

SMC 120 500,000 11 2.02× 10−9

is that we notice for the first two versions of SMC, the number of simulations per
iteration is even far smaller than the total number of nonzeros of the matrix, which
means that the MC simulation can approximate the solution with a moderate accuracy
without the need of accessing all the elements of the matrix, although, we used all
that information to build the preconditioners and the transition probabilities.

Evaluation of parallelization potential. We now seek to approximate how well
an idealized parallel computation would perform. In terms of effort, a Richardson
iteration uses the number of nonzeros (i.e., nnz) floating point operations (FLOPs)
per iteration, as it basically computes a sparse mat-vec product. For GMRES, at
the kth iteration, it takes a sparse mat-vec product O(nnz) as well as an Arnoldi
iteration which costs O(kn) FLOPs. For SMC, each random sample costs constant
time (Walker, 1974) (note, this is based on a simple pseudorandom number generator),
therefore each iteration costs O(NL+nnz), where N is the total number of simulations
and L is the length of the random walk. We compute the total FLOPs for each method,
and split them to parallelizable and nonparallelizable. Then we can theoretically
model the runtime as we vary the number of processors and communication costs.
The performance model we use is to

• assume the cost of a single FLOP is 1 and
• assume the number of processors is p and the cost of the communications and

synchronizations is σ, then the cost of one parallel computation for t FLOPs
is t/p+ σ for p > 1 and t for p = 1.

First we describe a set of operations we consider parallelizable. The mat-vec pro-
duction is parallelizable for all three methods. The Arnoldi iteration in GMRES is
parallelizable. And MC simulation in SMC is parallelizable. In theory, vector opera-
tions such as addition, multiplication, or computing the norm are also parallelizable,
however, we do not count the work involved in vector operations as it can often be
combined with other parallel work or be implemented highly efficiently. Consequently,
we only consider matrix operations. Let niter denote the total number of iterations
(note that it is different for each method).

• Runtime of GMRES:
∑niter

k=1

(
2∗nnz/p+σ+4∗n∗ceil(k/min(k, p))+σ

)
+k2+

2nk/p, where ceil is the function that outputs the greatest integer less than
or equal to the input number. Among these values, 2 ∗nnz/p+σ denotes the
cost of a parallel mat-vec product. The summation in the middle denotes the
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Fig. 7. Runtime complexity comparison for different methods with different numbers of proces-
sors in the parallel setting. The SMC results are the dashed lines reflect the random walk lengths
from Table 4. The runtime complexity is in log scale. The communications and synchronizations
costs are assumed to be 100 times a FLOP for the figure in the left and 1000 times a FLOP for the
figure in the right.

cost of the Arnoldi function at iteration k, where the ceil function arises by
parallelizing over columns which cannot exceed k Arnoldi iterations. Finally,
k2 + 2nk/p is the cost of recovering the solution vector. Again, we drop the
cost of Givens rotation for simplicity.

• Runtime of Richardson: niter ∗ (2 ∗ nnz/p+ σ).
• Runtime of SMC: niter∗(2∗nnz/p+7∗N ∗L/p+2∗σ). Among these values,

2 ∗ nnz/p+ σ denotes the cost of a parallel mat-vec product. 7 ∗N ∗L/p+ σ
denotes the cost for one iteration of a full MC (i.e., with N simulations of
random walks of length L). The number 7 is a constant representing the
number of FLOPs needed for one random walk step (i.e., random sampling,
computing weight, updating the random variable).

We show the cost comparisons among the three methods for σ = 100 and σ = 1000
in Figure 7. In the setting of a single processor or a few processors, GMRES is faster
than SMC and the Richardson iterations. However when the number of processors
increases, GMRES has less parallelizable work than the SMC methods. This trend is
consistent with different values of σ. Compared with trade-offs between different SMC
methods, we would favor the SMC method with fewer iterations when there are more
processors. The reason is that as there are more processors for each parallel iteration,
the communication cost becomes more dominant, so by decreasing the total number
of outer iterations, it also decreases the total communication cost. This observation is
also consistent with the fact that by increasing σ from 100 to 1000, the SMC methods
with fewer iterations are affected less in terms of runtime complexity. This shows
that, in principle, these methods are able to outperform a Krylov subspace method.

It is also worth noting that besides the benefit of being easily parallelized, the
SMC method, due to its stochastic nature, is more robust when faults or hardware
failures occur.
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6. Conclusion and future work. In this paper we studied a generalization of
MC methods for linear systems. The generalization allows the Markov random walk
to transition using a set of matrices. We derived the variance of the resulting esti-
mator and construct the matrices in a way to attempt to produce a finite variance.
The advantages of this new random walk procedures are twofold. First it can solve
more problems that the standard method fails to solve. Second our new method has
the tendency to decrease the variance and thus decrease the computation needed to
estimate the solution. Numerical experiments on both synthetic and real world ma-
trices confirm the superiority of our method in the above two aspects when compared
to the standard MC method. An open problem suggested by our work is to get a
purely local method that avoids the global work in building the sequence of transi-
tion matrices. For future work we would like to explore the possible solutions to this
problem. Another direction for future work is to study the robustness of the multiway
method.
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